Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1998): 20230106, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132237

RESUMO

Understanding how animals respond to large-scale environmental changes is difficult to achieve because monitoring data are rarely available for more than the past few decades, if at all. Here, we demonstrate how a variety of palaeoecological proxies (e.g. isotopes, geochemistry and DNA) from an Andean Condor (Vultur gryphus) guano deposit from Argentina can be used to explore breeding site fidelity and the impacts of environmental changes on avian behaviour. We found that condors used the nesting site since at least approximately 2200 years ago, with an approximately 1000-year nesting frequency slowdown from ca 1650 to 650 years before the present (yr BP). We provide evidence that the nesting slowdown coincided with a period of increased volcanic activity in the nearby Southern Volcanic Zone, which resulted in decreased availability of carrion and deterred scavenging birds. After returning to the nest site ca 650 yr BP, condor diet shifted from the carrion of native species and beached marine animals to the carrion of livestock (e.g. sheep and cattle) and exotic herbivores (e.g. red deer and European hare) introduced by European settlers. Currently, Andean Condors have elevated lead concentrations in their guano compared to the past, which is associated with human persecution linked to the shift in diet.


Assuntos
Cervos , Falconiformes , Humanos , Animais , Bovinos , Ovinos , Efeitos Antropogênicos , Aves , Dieta
2.
Mol Ecol Resour ; 22(5): 1906-1918, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35007402

RESUMO

Genetic monitoring using noninvasive samples provides a complement or alternative to traditional population monitoring methods. However, next-generation sequencing approaches to monitoring typically require high quality DNA and the use of noninvasive samples (e.g., scat) is often challenged by poor DNA quality and contamination by nontarget species. One promising solution is a highly multiplexed sequencing approach called genotyping-in-thousands by sequencing (GT-seq), which can enable cost-efficient genomics-based monitoring for populations based on noninvasively collected samples. Here, we develop and validate a GT-seq panel of 324 single nucleotide polymorphisms (SNPs) optimized for genotyping of polar bears based on DNA from noninvasively collected faecal samples. We demonstrate (1) successful GT-seq genotyping of DNA from a range of sample sources, including successful genotyping (>50% loci) of 62.9% of noninvasively collected faecal samples determined to contain polar bear DNA; and (2) that we can reliably differentiate individuals, ascertain sex, assess relatedness, and resolve population structure of Canadian polar bear subpopulations based on a GT-seq panel of 324 SNPs. Our GT-seq data reveal spatial-genetic patterns similar to previous polar bear studies but at lesser cost per sample and through use of noninvasively collected samples, indicating the potential of this approach for population monitoring. This GT-seq panel provides the foundation for a noninvasive toolkit for polar bear monitoring and can contribute to community-based programmes - a framework which may serve as a model for wildlife conservation and management for species worldwide.


Assuntos
Técnicas de Genotipagem , Ursidae , Animais , Canadá , DNA , Genótipo , Técnicas de Genotipagem/métodos , Ursidae/genética
3.
Ecol Evol ; 10(8): 3706-3714, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313629

RESUMO

Predicting the consequences of environmental changes, including human-mediated climate change on species, requires that we quantify range-wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations (n = 358) using 13,488 genome-wide single nucleotide polymorphisms (SNPs) identified with double-digest restriction site-associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation. These data on the genetic structure of polar bears using SNPs provide a detailed baseline against which future shifts in population structure can be assessed, and opportunities to develop new noninvasive tools for monitoring polar bears across their range.

4.
PeerJ ; 8: e8884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292653

RESUMO

DNA extracted from fecal samples contains DNA from the focal species, food, bacteria and pathogens. Most DNA quantification methods measure total DNA and cannot differentiate among sources. Despite the desirability of noninvasive fecal sampling for studying wildlife populations, low amounts of focal species DNA make it difficult to use for next-generation sequencing (NGS), where accurate DNA quantification is critical for normalization. Two factors are required prior to using fecal samples in NGS libraries: (1) an accurate quantification method for the amount of target DNA and (2) a determination of the relative amount of target DNA needed for successful single nucleotide polymorphism genotyping assays. Here, we address these needs by developing primers to amplify a 101 bp region of the nuclear F2 gene and a quantitative PCR (qPCR) assay that allows the accurate quantification of the amount of polar bear (Ursus maritimus) DNA in fecal extracts. We test the assay on pure polar bear DNA extracted from muscle tissue and find a high correlation between fluorometric and qPCR quantifications. The qPCR assay was also successfully used to quantify the amount of DNA derived from polar bears in fecal extractions. Orthologs of the F2 gene have been identified across vertebrates; thus, similar qPCR assays could be developed for other species to enable noninvasive studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...